
MTS 0-933957-28-9                           1 

Analyzing Acoustic Imagery in 3-D:  A Case Study 
 

A.R. Haas 
Logicon, Inc.  Herndon, VA 

 
S. Ziegler 

 Mississippi State University, Starkville, MS 

 
P.P. Gruzinskas 

Naval Oceanographic Office, Stennis Space Center, MS 
 

 
Abstract—The U.S. Navy has always had an acute interest in 

the seafloor.  It frames their battlespace, and knowledge of its 
features and characteristics can lead to tactical advantage.  
Modern survey technology, combined with precise positioning 
systems, has provided oceanographers more data than can be 
comprehended effectively.  The task of scientific visualization is 
to represent the data both accurately and effectively.  The 
application that is applied to the data must communicate the 
essential features within the data to the user.  In the case of the 
seafloor, the ability to render the terrain in three dimensions (3-
D) has not only made the data easier to interpret but provides a 
framework for intuitive displays of other data within the context 
of the submarine bottom.  This case study will demonstrate 
effective real-time rendering of gridded bathymetry, using a 
level of detail implementation to reduce the polygon count and 
provide a tool that is both efficient and portable.  A navigable 
plan-view, graticule, and depth probe help to quantify the data 
within the application, which is primarily mouse-driven. 

The second part of this case study will deal with applying 
acoustic imagery to the surface of the seafloor as a texture.  
High-frequency towed sensors are producing ultra-high-
resolution imagery.  These data can be manipulated rather 
painlessly in two dimensions (2-D); however, rendering a 3-D-
textured surface in real time can tax even the strongest 
hardware.  This application was designed to support mine 
warfare and mine countermeasures.  To achieve interactivity 
with the data, a technique called 3-D clip-mapping or clip-
texturing is applied.  It leverages specialized hardware, which 
uses dedicated texture memory and can manage the varying 
resolutions created to facilitate interactive frame rates.  
Although some effort was expended to produce this application 
in OpenGL, it was decided to leverage the extensive 
development efforts devoted to Silicon Graphics, Inc.’s 
Performer product to accomplish this task.  The Naval 
Oceanographic Office Major Shared Resource Center 
Visualization Center has made significant accomplishments 
toward the display of other ocean parameters within our 3-D 
ocean environment, such as ocean circulation, temperature, and 
bioluminescence.  This case study will address only the 
applications developed for the bottom geometry, which, because 
of their efficiency, enable the incorporation of additional 
environmental information. 
 

I.  INTRODUCTION 
 

The Navy’s growing interest in acoustic backscatter 
imagery has been complemented by its proficiency in 
collecting, processing, and analyzing these extremely 
valuable data.  For many years the Navy has collected these 
data in support of hydrographic survey operations.  Side-scan 

sonar is unsurpassed at detecting underwater hazards to 
navigation. 

In the early 90’s geophysicists at the Naval 
Oceanographic Office (NAVOCEANO) began processing the 
raw sonar returns from the low-frequency hull-mounted 
multibeam bathymetric systems used for deep-water surveys, 
to extract backscatter information [1].  To create this acoustic 
imagery, amplitude information was extracted from the raw 
sonar return and converted into an acoustic image.  The 
resolution of the mosaicked imagery extracted from these 
low-frequency hull-mounted systems was on the order of 50 
m and provided valuable information regarding the acoustic 
properties of the seafloor.  The stacked scan lines offered a 
higher resolution view of the data, but analysis of this data 
did not provide a truly geo-referenced view.  These low-
frequency deep-water systems had limitations working in 
shallow water.  Since then, the Navy mission has moved into 
shallow littoral zones. 

To meet this new mission, scientists at NAVOCEANO 
have been involved in collecting, processing, and analyzing 
acoustic imagery from various sources, to support a wide 
spectrum of tactical operations.  These operations include, but 
are not limited to, hydrographic hazard detection, mine 
warfare, mine countermeasures, acoustic modeling, salvage 
operations, and cable laydown. 

Some of the systems the office employs to reveal the 
texture of the seafloor include low-frequency hull-mounted, 
low- and high-frequency towed, and CHIRP (swept 
frequency).  The original analog systems have been replaced 
with digital systems, which facilitated near-real-time display 
of these crucial data. 

These data are processed and displayed by both 
commercial off-the-shelf (COTS) and custom software 
applications that use algorithms for filtering, object 
detection/clutter analysis, and bottom characterization.  
Custom products are generated once the data has been 
processed and controlled for quality.  The resolution of the 
mosaics produced from the high-frequency towed system 
discussed here is 75 cm, but the software application outlined 
in this case study will deal with even higher resolution 
imagery. 

The underlying bathymetry used is .1 arc minute, or 
approximately 180-m resolution.  The Klein 5000 survey 
system leverages a 455-kHz signal and an operator-selectable 
pulse length (50 to 200 µsec) to collect high-resolution 
backscatter data.  Cross-track resolutions from 7.5 to 15 cm 



 2 

can be achieved using these systems.  The speed of the 
collection vessel ultimately determines the resolution of the 
final mosaicked, or gridded dataset.  The Major Shared 
Resource Center Visualization Center is working with 
NAVOCEANO’s Image Processing Lab to display these data 
as a texture that when draped over the 3-D terrain can offer 
additional insight into the ocean floor and its related 
processes. 

The display of 2-D pixels, even high-resolution imagery, 
can be accomplished rather easily on standard desktop 
workstations.  The interactive display of these data as a 
texture that is then applied to a 3-D surface (bathymetry), 
however, requires specialized hardware and software 
techniques.  A texture pixel is mapped to a 3-D space.  The 
hardware required is part of Silicon Graphics Inc.’s (SGI’s) 
Onyx2 graphics architecture, which is called the Infinite 
Reality2 graphics pipeline.  The raster managers, or texture 
memory, are dedicated to the storage and rapid 
retrieval/display (paging) of textures.  The software used is 
the SGI Performer product, which contains a 3-D clip-
mapping technique [2].  This technique uses a dynamic level 
of detail scheme to efficiently render the full-resolution 
imagery in the user’s near field, while using lower resolution 
(over-sampled) versions of the gridded data in the user’s 
intermediate and far fields of view.  This allows for 
interactive (greater 30 frames/sec) roaming of these large 
datasets in 3-D space.  As commodity desktop architectures 
improve, in part due to the evolution of the 3-D computer 
gaming industry, this type of memory will be common on 
standard 3-D graphics cards. 
 

II.  BATHYMETRY SOFTWARE 
 

The size of both modeled and measured data in current 
ocean studies challenges a workstation’s ability to visualize 
data at interactive speed.  Usual methods of visualization 
relied on heavy batch-style post-processing of the data into 
image files that can be played back as movies or plotted and 
studied for future use.  Interactive visualization has been 
traditionally done with COTS packages that statically 
construct geometry of the entire data surface and then render 
this geometry as one piece.  Graphics systems of mid-end 
workstations often cannot render the geometry fast enough to 
be interactive. 

Data from ocean studies is comprised of bathymetry and 
bathymetric texture that is often too large to be visualized 
directly.  In this paper we describe two software packages 
developed at NAVOCEANO that perform interactive 
rendering of large-scale 3-D bathymetric terrains and render 
large-scale 2-D texture datasets mapped to 3-D terrains.  The 
software uses demand-paging of graphics, memory, and I/O 
resources to accommodate very large data spaces.  This 
enables the exploration of ocean data sets anywhere across 
the earth using the memory and graphics present on today’s 
midrange desktop workstations. 
 
A.  CharterExplorer 

CharterExplorer is a software package developed at 
NAVOCEANO that lets a user roam across large areas of 

bathymetry.  The program reads bathymetry data from the 
Charter file format (used by the Seafloor Data Bases Branch 
at NAVOCEANO).  The data are reconstructed into a 3-D 
surface of the seafloor.  The reconstruction takes place “on-
the-fly,” dynamically optimizing the level-of-detail of the 
areas within the user’s current sight.  This dynamic approach 
is required to navigate data spaces that would bottleneck the 
graphics systems. 

The Level-of-Detail (LOD) rendering used in 
CharterExplorer actively manages the scene’s geometry, so 
interactive rates are maintained.  Only geometry for the 
terrain within the user’s field of view is constructed.  The 
construction uses multiple LOD of the bathymetric data to 
ensure that high-resolution geometry is conserved for terrain 
features near the user. 

LOD rendering is accomplished using a feature called 
Mip-mapping.  Mip-mapping is a conventional feature of 
texture mapping hardware that uses a low-resolution texture 
when shading far away objects, and high resolution when 
shading objects up close.  CharterExplorer applies this 
principle to bathymetry data by reducing the data into a fixed 
number of mip-map levels, N.  The levels range from 0 – N-
1, with level 0 containing the original full-size data and level 
N-1 containing data reduced by a factor 2-(N-1), effectively 
reducing the data by 50% in each level.  N is chosen to give a 
minimum resolution typically in the range of (50 x 50) to 
(100 x 100). 

CharterExplorer divides the area into fixed-size tile units.  
Each tile can be quickly checked if all or part of it lies within 
the user’s field of view.  The mip-map level of each tile is a 
function of the tile’s distance from the viewer.  The user can 
stretch or contract this function as the program is running via 
a couple of keystrokes.  This has the effect of using lower 
resolution mip-map data across the horizon (stretching), and 
using higher resolution data across the same horizon 
(contracting).  CharterExplorer continuously computes the 
tiles and their levels within the mip-map as the user’s field-
of-view changes. 

Fig. 1 shows CharterExplorer applied to a 3600x2400 
global bathymetry dataset (taken from a 1/10 degree Parallel 
Ocean Program (POP) model).  The bathymetry closest to the 
viewer is rendered at a higher resolution mip-map level than 
the farther bathymetry.  This enables large spaces of data to 
be explored at interactive speeds. 

CharterExplorer allows the user to probe the rendered 
data by clicking the mouse over the desired location.  This 
action causes a marker to be placed on the seafloor of the 
clicked location.  The marker is annotated with longitude, 
latitude, and depth.  The probe may be dragged across the 
bathymetry for continuous feedback. 

 
III.  ACOUSTIC TEXTURE MAPPING 

 
Sonar texture data are mapped onto the 3-D surface 

bathymetry using a hardware technique called Clip-mapping.  
Clip-mapping is a feature of a graphics hardware that 
performs texture mapping across very large 2-D textures.  In 
this case, the texture comprises pre-processed scan-lines of 
sonar imagery data. 



 3 

 
 
 
 
In implementing a real-time navigation application that 

would handle large textures using clip-mapping, we decided 
that IRIS Performer was a suitable option.  It has the 
advantage of being abstracted to a level above OpenGL, so 
writing code should be easier.  Another advantage is that 
Performer is finely tuned to operate on SGI graphics 
hardware, so applications should have greater performance, 
especially on higher-end systems.  Usually, this hardware-
specific approach is a disadvantage because of the loss of 
portability; however, the clip-mapping hardware is currently 
available only on SGI systems.  Thus, an implementation in 
OpenGL is just as platform-limited as a Performer 
counterpart.  

A.  Performer Overview 
Performer consists of several libraries from which an 

application can be built.  At the lowest level, the "libpr" 
library provides basic rendering functions.  One layer above 
this is the "libpf" library, which provides multiprocessed 
rendering of a database of objects defined by a scene.  Other 
libraries include "libpfdu" for managing object and file 
formats and "libpfui" for user interface functions.  We used 
the "libpf" library, since it provided us with a high-
performance interface and a level of abstraction suitable for 
rapid development of this specific application. 

The heart of a "libpf" Performer application is the scene 
graph. A scene graph is a directed acyclic graph of the 
elements of some virtual scene.  Objects may be added or 
removed from the scene graph during program execution.  
The scene graph is given to the Performer rendering engine, 
where it is drawn in a graphics window.  Performer provides 
all of the functions necessary to create and modify the scene 
graph, as well as pass the scene graph to the rendering 
engine. 

Multiprocessing in a Performer application provides a 
performance advantage when the application is on a system 
with more than one processor.  Performer uses multi-
processing by dividing an executable into three phases: 
application, culling, and drawing.  The application phase is 
where the program handles computations, user input, and 
other miscellaneous tasks.  The culling phase removes any 
objects within the scene graph that are outside of the field of 
view.  The drawing phase is where the remaining objects are 
drawn in the graphics window.  On a system with multiple 
processors, these phases are pipelined such that while the first 
frame is being drawn on one processor, the second frame is 
being culled, and the third frame is in the application phase. 

 
B.  Implementation 

In implementing our clip-texturing application, we 
divided it into five steps: 

 
1.  Create a Basic Performer "Plane Navigation" Application 
2.  Add Multiprocessing Capability 
3.  Add a Simple Texture 
4.  Change the Texture to a Clip-Texture 
5.  Add Topography Information 

 
With these steps, we could start with a basic application and 
add features until we achieved our goal. 
 
STEP 1:  Create a Basic Performer "Plane Navigation" 
Application 
 

The first step involved adding the components necessary 
for any "libpf" Performer Application.  The scene graph 
consists of a GeoSet, which defines the geometry, and a 
GeoState, which defines the properties of that geometry 
(color, texture, etc.).  The GeoSet is simply a plane, defined 
as a rectangle covering the same area as the texture.  The 
GeoState defines the rectangle’s area initially to be white. 

The mouse was used to navigate around the plane.  
Pressing a button would fly forward or backward, and 

Fig. 1.  View from CharterExplorer looking northeast from 
Australia across a 3600x2400 global ocean bathy dataset. 
 

Fig. 2.  Top down view of complete 8192x8192 acoustic 
texture space.  The lowest level of texture resolution in the 
clip-map is used. 



 4 

moving the mouse would steer.  Since the "libpfui" library is 
not used in the interface, we used the X-toolkit Intrinsics to 
access the mouse and keyboard.  An asynchronous callback 
function checks the status of the mouse and keyboard and 
updates global state variables based on the input.  A separate 
function updates the viewer position based on these global 
state variables.  Finally, the scene is rendered based on the 
new viewpoint.  This loop occurs every frame. 

 
STEP 2:  Add Multiprocessing Capability 
 

Adding multiprocessing requires little work in a "libpf" 
Performer application.  A single function is used to inform 
Performer how to set up the multiprocessing.  One may 
configure performer to use a specific number of processors or 
allow Performer to choose a suitable configuration based on 
the hardware.  We allowed Performer to choose the config-
uration. 

Our application also used global state variables.  This is a 
problem in multiprocessing applications, since each process 
has its own copy of each global variable, independent of the 
others.  To solve this problem, Performer established a shared 
memory arena and provides functions to allocate memory in 
the shared arena.  These state variables were put in the shared 
arena, where all processes had simultaneous access. 

 
STEP 3:  Add a Simple Texture 
 

To add a texture to the plane, one enables texturing in the 
GeoState associated with the plane.  A texture node is 
attached to the GeoState, which is a simple step in Performer. 

 
STEP 4:  Change the Texture to a Clip-Texture 
 

Performer treats clip-textures just like textures, so 
associating it with the GeoState is all that is required to attach 
it to the geometry.  However, additional information is 
required, since the clip-texture can be updated to change its 
center, where it uses the highest resolution possible.  This 
information can be included in a configuration file that can 
automatically be read by a Performer application. 

Also, a multiprocessing clip-texture node 
(MPClipTexture) must be attached to the clip-texture.  The 
MPClipTexture node is then added to the scene graph as a 
parent to the geometry node.  Performer provides the func-
tions necessary to update the MPClipTexture's center.  The 
center is updated based on the user's viewpoint, such that the 
highest resolution in the texture is where the user is looking. 
 
STEP 5:  Add Topography Information 

 
Finally, a standard format for loading topography 

information and building a grid must be defined.  Instead of 
the plane, this grid will be the 3-D surface bathymetry onto 
which the texture will be mapped.  The CHRTR format used 
by CharterExplorer was selected since the application was 
directed toward texturing sonar imagery onto the seafloor.  
Also, this requires modifying the collision detection to 
prevent the user from flying through the terrain. 

Fig. 3 shows the application of the Performer Clip-
Texturing technique to the 8192x8192 acoustic imagery 
shown in Fig. 1.  The texture has been overlaid with an 
exaggerated coarse bathymetry.  The clip-texturing allows the 
user to interactively roam across texture sizes that exceed the 
hardware’s direct texture mapping capability.  The small 
bump at the lower center portion of the figure is a minelike 
device seen at the highest resolution. 
 

IV.  FUTURE WORK 
 

As resolutions of both bathymetry and acoustic imagery 
inevitably increase, fusion of the level of detail algorithm 
used for the bathymetric surface, and the clip-mapping tech-
nique applied to the imagery will have to be accomplished.  
Another promising technique for the analysis of acoustic 
imagery in 3-D involves the creation of a bump map from the 
acoustic image, which can then be rendered in 3-D using 
Phong shading.  Most importantly, the porting of these tech-
niques to commodity desktops and even laptop architectures 
will be pursued as the requirement to efficiently provide 
digital data to the fleet becomes increasingly important. 

 
REFERENCES 

 
[1] S.C. Lingsch and C.S. Robinson, “Processing, 

Presentation, and Data Basing of Acoustic Imagery,” 
Oceans ’95 MTS/IEEE Conference Proceedings, pp. 
1582-1591, 1995. 

[2] J. Rohlf and J. Helman, “IRIS Performer: A High 
Performance Multiprocessing Toolkit for Real-Time 3D 
Graphics,” Computer Graphics (SIGGRAPH ’94 
Proceedings), pp. 381-394, 1994. 

Fig. 3.  Zoomed view of 8192x8192 acoustic texture in Fig. 2.  
The texture is laid across an exaggerated topography.  The clip-
mapping technique uses a clipped version of high-resolution 
texture near the viewer.  Textures that lie outside the high-
resolution clip-map are progressively mapped to lower 
resolutions. 


